Saturday, May 19, 2012

General Fusion Gets New Funding to Pursue Unconventional Fusion Power Approach


For all its promise, the quest for net gain fusion has been a time consuming and costly endeavor. The ITER reactor is projected to take 10 years and 13 billion euros to construct. That doesn’t count the 25 years and counting since the project began and the millions poured in by contributors so far. Even when built, ITER’s super conducting magnets and other components would require 50 MW worth of input power to start and maintain the reaction. Similarly, costs for Laurence Livermore’s National Ignition Facility are estimated at upwards of $850 million and its reactor requires 500 trillion watts of laser light to kick-start fusion reactions.

Where General Fusion’s magnetized target method stands apart is in its relatively low-tech, low-cost mechanical means of compressing the plasma. “As an energy storage medium, compressed gas is orders of magnitude less expensive than capacitors,” Delage explains, “but it’s hard to release this energy quickly.”

...“Our sphere is in fact full of holes, like a Wiffle ball,” he explains. “Each hole is plugged with an ‘anvil’ and compressed gas is used to accelerate a 100 kg ‘hammer’ piston. This acceleration takes about 80 milliseconds. When the hammer piston impacts on the anvil piston, it moves a small amount and transfers the energy into the liquid metal in about 80 microseconds. That’s a timescale shorter than the lifetime of the magnetized target and an increase in power of 1000 times.” _Canadian Manufacturing _via_NBF

General Fusion has secured a new round of funding (PDF) and is prepared to take their unconventional approach to fusion as far as they can take it. No one needs to tell the General Fusion team or their investors that they are pursuing a long shot.

But then, the same applies to all the other small-scale fusion startups, who are trying to do an end-run around the huge multi-billion dollar approaches taken by ITER and Lawrence Livermore, etc.

The General Fusion website contains much more information about the science, technology, and the people behind this dark horse candidate to develop commercial fusion power.

Brian Wang provides a library of NextBigFuture articles devoted to the General Fusion effort

Labels: ,

Saturday, May 05, 2012

Sizing the Power Supply for Your Doomsday Bunker


After the Apocalypse

After the doomsday bell tolls, you will want to have a safe hideaway, packed with your favourite foods, beverages, people, and prescription drugs. But no matter how safely your bunker is designed, you cannot survive long without a source of heating and electrical power.

Issues of energy density dictate the need for a nuclear power and heat source -- either fission or fusion. The choice seems to come down to either a small modular nuclear fission reactor -- such as the NuScale or Wilcox and Babcock models, vs one of the new scalable fusion reactor models. The Lawrenceville Plasma Physics focus fusion device pictured below, appears to be the leader of the pack in terms of timeline for proof of concept, prototype, commercial demo, and mass production.
All images below taken from Lawrenceville Plasma Physics Inc (PDF) (via) NBF

Five megawatts baseload power should be enough to supply the power and heat needs of most medium-sized doomsday communities. When living in an underground environment, it is easy to underestimate needs for space lighting and grow-lighting, as well as power for supplying pumps, compressors, blowers, fans, filtration devices, and various electronic devices.

The diagram above attempts to illustrate energy flows and losses in the focus fusion system. Operation of the reactor will be highly automated, but a certain amount of oversight will be necessary, to assure smooth function and to limit any need for routine maintenance shutdown.

Baseload power generation means that the reactor produces 5 MW at all times. Any heat and power produced above the needs of the doomsday community will converted as needed, and routed to storage or to a sink. Since the reactor utilises hydrogen and boron as fuel, a significant amount of excess power will be used to maintain hydrogen stores. The hydrogen can be used as fuel in either the focus fusion reactor, or in backup fuel cell CHP generators.

The timeline for production of the LPP focus fusion reactors is particularly optimistic, with estimates for mass production as early as 2016.

Keep in mind that US federal and state regulators are unlikely to approve these devices for sale in the US anytime within the next decade. This means that any US citizen wishing to use these reactors as backup power supplies for their home, seastead, polar outpost, or doomsday bunker, will either need to locate outside the US, or will need to find extra-legal ways of installing their nuclear fusion (or SMR fission) reactors within the borders of the US.

In the event of doomsday, it is expected that nuclear enforcement by US federal or state officials will be suspended for a number of years. In such a case, issues of survival are likely to be paramount, over issues of bureaucratic red tape.

Labels: ,

Wednesday, July 06, 2011

Small Fusion Reactors: An Alternative to Fission?

General Fusion

General Fusion is a small startup headquartered near Vancouver, BC. The compression of plasma to achieve fusion is accomplished by a coordinated spherical plasma compression, using pneumatics and advanced switching.
Helion

Helion Energy is located in Redmond, Washington. It is based on a principle of "colliding plasmas," and like all the rest of the small fusion approaches, it is a long shot.
Bussard IEC Fusion

Bussard inertial electrostatic confinement fusion (EMC2 Fusion) involves an electrostatic plasma confinement to achieve fusion. The history and development of the concept is explained in a video reached via the link above. The Bussard IEC has been financed almost entirely by the US Navy. EMC2 is based near Santa Fe, New Mexico.
Dense Plasma Focus Fusion

Lawrenceville Plasma Physics is based in New Jersey. The dense plasma focus approach uses a special pulsing "spark plug" to ionise a gas, and to form a plasmoid "pinch," with the emission of high energy photons, ions, and fusion neutrons.
HyperV

Hyper V Technologies utilises a spherical array of mini railguns to accelerate plasma beams into a central target of deuterium or deuterium-tritium, to achieve fusion (hopefully).
TriAlpha

TriAlpha is an Irvine, California venture, which has been fairly successful in the venture capital game. TriAlpha is a bit secretive with non-investors, but you can read their patent for yourselves. The concept seems to involve the highly sophisticated evolution of an earlier colliding beam fusion approach.

Fusion reactors can be prolific neutron generators, and could be utilised for the transmutation of nuclear wastes into harmless compounds. They could also generate a number of differen highly energetic particles and high energy photons, and used for a number of purposes -- including as space propulsion. Another potential product of fusion reactions is heat. But what is most desired from fusion reactors is abundant, cheap, clean electrical power.

The energy from fusion is higher than the energy from fission, so that less fuel is required to generate equivalent energies. Fusion is generally safer, with less radioactive waste remaining to be disposed of.

Many billions of dollars have been spent by governments in a vain attempt to master the power of the stars on a more human scale. If one of the small startups manages to achieve with $millions what huge government budgets of $billions could not achieve, a revolution would have been ignited which would likely not stop with just cheap, clean, abundant energy.

Labels: ,

Older Posts